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Motivation

B. Maass et al. “Crater navigation system for

autonomous precision landing on the moon”.

In: Guidance, Control, and Dynamics (2020)

L. M. Downes et al. “Lunar terrain relative

navigation using a convolutional neural network

for visual crater detection”. In: ACC. 2020

M. R. Balme et al. “The 2016 UK Space

Agency Mars Utah Rover Field Investigation”.

In: Planetary and Space Science (2019)

A. Lagain et al. “Model age derivation of large

martian impact craters, using automatic crater

counting methods”. In: Earth and Space

Science (2021)



3/11

LRO, LROC, Crater Database

M. S. Robinson et al. “Lunar
reconnaissance orbiter camera (LROC)
instrument overview”. In: Space Science
Reviews (2010)

S. Robbins. “Developing a global lunar
crater database, complete for craters≥1
km”. In: LPSC. 2016
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LROC labels

Many small craters are missing but –

“the maximum scores are reached when 100% of the annotations are kept”

O. Petit et al. “Handling missing annotations for semantic segmentation with deep
convnets”. In: DLMIA/ML-CDS. 2018
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PANGU simulator

S. Parkes et al. “Planet surface simulation with pangu”. In: Space Ops. 2004
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Two-stage system overview

1. Stage 1: Transforming simulated images of the lunar landscape from PANGU
into “LROC-esque” images

2. Stage 2: These outputs used to train downstream models e.g. for segmenting
and detecting lunar craters

T. Bruls et al. “Generating all the roads
to rome: Road layout randomization for
improved road marking segmentation”.
In: ITSC. 2019

R. Barth et al. “Optimising realism of
synthetic images using cycle generative
adversarial networks for improved part
segmentation”. In: Computers and
Electronics in Agriculture (2020)
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Related work

P. F. Proença et al. “Deep learning for spacecraft pose estimation from photorealistic
rendering”. In: ICRA. 2020
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Dataset generation

1. LROC image tiled, to capture fine-features

2. PANGU images with similar surface area

3. Unpaired for CycleGAN training

4. Crater labels (PANGU) also tiled (U-Net training)
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Synthesis example

PANGU

1. Computer-generated

2. Lacks realism and detail

PANGU2LROC

1. Realistic and visually striking

2. Textures, shadows, etc
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Segmentation example

Trained on PANGU

1. Large craters have broken borders –
e.g. bottom middle

2. Many small craters missing

Trained on PANGU2LROC

1. Large craters more closely following
the true outline

2. More comprehensive capture of the
small craters
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Conclusion

Summary

1. Closing the realism gap for rendered images from planetary simulators

2. Improving the training of a downstream lunar crater segmentation model

Future work

1. Robust in-simulator testing of lunar operations

2. More modern synthesis methods (e.g. latent diffusion models)


