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Atılım Güneş Baydin
Departmental Lecturer in Machine Learning, Department of Computer Science

Oxford AI4Science (Artificial Intelligence for Science) Lab

Collaborators at: 

● Specializing in probabilistic machine 
learning and scientific discovery

● Working with experts in high-energy physics, 
heliophysics, astrobiology, Earth science, 
space safety and other disciplines

● Solve challenging problems through 
application and development of AI methods

https://oxai4science.github.io 

https://oxai4science.github.io


Frontier Development Lab
NASA, ESA, Oxford



Frontier Development Lab
● A research accelerator for state-of-the-art ML and space sciences
● Two main versions

○ NASA Ames & SETI Institute (FDL US)
○ ESA & University of Oxford (FDL Europe)

● Access to compute provided by industry (Google, Intel, Nvidia and others)
● Teams of 

○ PhD students / postdocs (two machine learning, two domain science)
○ supervising faculty

https://fdl.ai 

https://fdl.ai




Machine learning and space



CASE I



Acciarini, Pinto, Metz, Boufelja, Kaczmarek, Merz, Martinez-Heras, Letizia, Bridges, Baydin “Kessler: a Machine Learning Library for Space Collision 
Avoidance” 8th European Conference on Space Debris 2021
Pinto, Acciarini, Metz, Boufelja, Kaczmarek, Merz, Martinez-Heras, Letizia, Bridges, Baydin “Towards Automated Satellite Conjunction Management with Bayesian Deep Learning” AI Earth Sci Workshop, NeurIPS 2020
Acciarini, Pinto, Metz, Boufelja, Kaczmarek, Merz, Martinez-Heras, Letizia, Bridges, Baydin “Spacecraft Collision Risk Assessment with Probabilistic Programming”  ML4PS workshop, NeurIPS 2020

ML for spacecraft collision avoidance
Low Earth orbit (LEO) has millions of uncontrolled objects (~1cm) 
at ~28,000 km/h orbital speeds

● Kessler Syndrome: chain reaction of collisions can pollute the 
orbit and render it inaccessible

● Danger to satellites, scientific missions, future human access 

● Large constellations, e.g., SpaceX StarLink (40k), OneWeb and 
rapidly increasing commercial space activities contribute to the 
problem
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ML for spacecraft collision avoidance
Worked with ESA Space Debris Office to 
automate risk assessment and maneuver decisions

● Working with conjunction data messages (CDMs)

● Probabilistic programming with physical orbit simulators 
that generate scenarios and synthetic CDMs

● Bayesian deep learning to predict event evolution as a 
sequence of CDMs

https://github.com/kesslerlib
Named after Donald J. Kessler

Acciarini, Pinto, Metz, Boufelja, Kaczmarek, Merz, Martinez-Heras, Letizia, Bridges, Baydin “Kessler: a Machine Learning Library for Space Collision 
Avoidance” 8th European Conference on Space Debris 2021
Pinto, Acciarini, Metz, Boufelja, Kaczmarek, Merz, Martinez-Heras, Letizia, Bridges, Baydin “Towards Automated Satellite Conjunction Management with Bayesian Deep Learning” AI Earth Sci Workshop, NeurIPS 2020
Acciarini, Pinto, Metz, Boufelja, Kaczmarek, Merz, Martinez-Heras, Letizia, Bridges, Baydin “Spacecraft Collision Risk Assessment with Probabilistic Programming”  ML4PS workshop, NeurIPS 2020

Funding: ESA ESRIN / PhiLab, Google Cloud
Funding: UK Space Agency (£250k, with Surrey Space Centre and Cranfield)

https://github.com/kesslerlib










(Full image atmospheric drag)CASE II



Thermospheric density models are a key ingredient 
in mission planning and operations in Earth orbit

● Orbital motion is affected by gravity and non-
gravitational perturbations (drag)

● Thermospheric density is a major component of 
drag, affected by solar activity

● Current models are not accurate, computationally 
expensive, based on proxies for of solar activity 
(solar irradiance F10.7, geomagnetic indices ap, Kp)

Work requested by NASA SMD to develop 
benchmarks of thermospheric density estimation 
using ML with direct solar data from in-orbit 
instruments (NASA SDO)

Funding: NASA SMD Heliophysics Division

Thermospheric density estimation using machine learning



● State-of-the-art thermospheric models 
governed by on-ground irradiance 
proxies/geomagnetic indices
○ F10.7 →  Solar irradiance
○ ap, Kp → Geomagnetic field

● Solar data available from in-orbit instruments 
such as the Solar Dynamics Observatory (SDO)

● Curated solar data available (SDOML dataset)

● Machine learning techniques can leverage data to
○ Improve and forecast solar proxies
○ Generate surrogate atmospheric models
○ Drive knowledge discovery for other 

planets/moons

SDO AIA instrument

Thermospheric Density Estimation



Trained with ground truth 
data from
● CHAMP
● GRACE
● Swarm A - B 
● GOCE

Thermospheric Density Estimation: Combining Data from Multiple Missions

CHAMP (GFZ), 2001 - 2010 GRACE (NASA), 2002 - 2009 Swarm (ESA), 2013 - 2021 GOCE (ESA), 2010 - 2013



FDLXHELIO.ORG19

Key Result: 
ML-informed replication of F10.7 
at higher cadence.



Machine learning 
on board



SpaceX Transporter 2 launch,
30 June 2021

CASE III



Mateo-Garcia, Veitch-Michaelis, Smith, Oprea, Schumann, Gal, Baydin, Backes “Towards Global Flood Mapping Onboard Low 
Cost Satellites with Machine Learning” Scientific Reports 2021 (in press)
Mateo-Garcia, Oprea, Smith, Veitch-Michaelis, Baydin, Backes “Flood Detection On Low Cost Orbital Hardware.” AI for Humanitarian Assistance and Disaster 
Response Workshop, NeurIPS 2019
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Deploying ML in space
● CubeSats can provide affordable disaster response at a fraction of cost of 

larger missions, making it accessible to developing countries
● Perform flood segmentation onboard satellite to reduce downlinked 

data, using weight-quantized U-nets and convolutional neural networks

50-band hyperspectral camera



Mateo-Garcia, Veitch-Michaelis, Smith, Oprea, Schumann, Gal, Baydin, Backes “Towards Global Flood Mapping Onboard Low 
Cost Satellites with Machine Learning” Scientific Reports 2021
Mateo-Garcia, Oprea, Smith, Veitch-Michaelis, Baydin, Backes “Flood Detection On Low Cost Orbital Hardware.” AI for Humanitarian Assistance and Disaster 
Response Workshop, NeurIPS 2019

Deploying ML in space
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Worked with ESA Centre for Earth Observation 
(ESRIN)
● Originally targeted the PhiSat-1 (Sep 2020)
● First step: demonstrated feasibility on Intel 

hardware (Movidius ML accelerator) identical 
with the one on board satellite

● Second step: Pilot the detection of flood 
events from space on D-Orbit’s Wild Ride 
mission

● Successfully launched on SpaceX 
Transporter-2 Mission, 30 June 2021

https://www.ox.ac.uk/news/2021-06-29-artificial-intelligence-
pioneered-oxford-detect-floods-launches-space 

https://www.ox.ac.uk/news/2021-06-29-artificial-intelligence-pioneered-oxford-detect-floods-launches-space
https://www.ox.ac.uk/news/2021-06-29-artificial-intelligence-pioneered-oxford-detect-floods-launches-space
https://www.ox.ac.uk/news/2021-06-29-artificial-intelligence-pioneered-oxford-detect-floods-launches-space


“Transporter 2”



ION Satellite 
Carrier



“Transporter 2”



“Transporter 2”

SpaceX Falcon 9 
rocket. 

Space Launch 
Complex 40 
(SLC-40) 







‘Worldfloods’ on Wild Ride - “Dauntless David” 

Sample Release for Social 

#ESA #ESA_EO #AI4EO #FDLeurope #phi-lab #D-Orbit #Unibap #spacecloud

FDLeurope (fdleurope.org) supported by the ESA’s Φ-lab in ESRIN announces the 
deployment of a proof -of-concept “Machine Learning (ML) payload” on D -Orbit’s upcoming 
‘Wild Ride’ mission being launched by SpaceX’s Falcon 9 on June 25th 2021 from Cape 
Canaveral. 

The ML payload, called ‘Worldfloods’, will leverage ML techniques to rapidly send to the 
ground a segmentation map  of Earth Observation (EO) images acquired in Low Earth Orbit 
(LEO) indicating classes such as water, land and cloud.  

Worldfloods is testing the potential of how ML derived flood maps anywhere on Earth  can 
be sent to emergency responders rapidly after image acquisition via technologies such as 
Nebula, an on-demand, on-orbit cloud computing and data storage service being developed 
by D-Orbit UK, which features Unibap’s SpaceCloud iX5 -100 radiation tolerant computing 
module. 

Worldfloods powered by Nebula offers a glimpse of a future where rapid insight  is delivered 
in real-time to users from space. Demonstrating this functionality on the D -Orbit Wild Ride 
miss ion in LEO is  the firs t s tep to automating satellite cooperation, ML payloads  and hybrid 
solutions  that amplify the utility of exis ting Copernicus  resources .

Worldfloods , was  developed by FDLeurope, a partnership with the Univers ity of Oxford, 
Trillium Technologies , ESA Φ-lab and leaders  in commercial AI, such as  Google Cloud and 
Intel.

http://fdleurope.org


Worldfloods + Space Cloud  
Processing S2 imagery in orbit to obtain a flood segmentation.  



Worldfloods



Worldfloods + Space Cloud  
Dockerized Inference pipeline deployed in D-Orbit hardware



CASE IV

NASA DragonFly Mission to 
Saturn/Titan



ONBOARD DETECTION OF MOLECULAR BIOSIGNATURES

● Dragonfly is a NASA mission to Saturn/Titan 
(launch planned June 2027)

● Robotic rotorcraft (VTOL)
● Instruments

○ Dragonfly Mass Spectrometer (DraMS)
○ Dragonfly Gamma-Ray and Neutron 

Spectrometer (DraGNS)
○ Dragonfly Geophysics and Meteorology 

Package (DraGMet)

We are working on ML methods to show feasibility 
of running an onboard biosignature detection with 
data from DraMS https://www.nasa.gov/dragonfly 

https://www.nasa.gov/dragonfly


ONBOARD DETECTION OF MOLECULAR BIOSIGNATURES

Illustrations: flaticon.com

● Dragonfly is a NASA mission to Saturn/Titan (launch planned June 2027)
● Robotic rotorcraft (VTOL)
● Instruments

○ Dragonfly Mass Spectrometer (DraMS)
○ Dragonfly Gamma-Ray and Neutron Spectrometer (DraGNS)
○ Dragonfly Geophysics and Meteorology Package (DraGMet)

● W

https://www.nasa.gov/dragonfly 

https://www.nasa.gov/dragonfly


INTRODUCTION | AGNOSTIC BIOSIGNATURES

Illustrations: flaticon.com

Defining “life” is hard!

What if alien life looks nothing like 
anything we’ve ever seen on Earth?



WHAT IS MOLECULAR  COMPLEXITY | WAYS TO MEASURE IT

How big is it?   
Da: Mass of atoms in the molecule

How diverse are its atomic ingredients?   
Cm : Number and nature of bonds in a molecule and asymmetry

What holds it together?
BHI : Number of bonds + diversity of atoms in that make up the 
molecule

How is it made?
MA :      Pathway to synthesize a given molecule

Propane

C3H8

   44.11 g/mol (Daltons)

Biotin  

C10H16N2O3S

244.31 g/mol (Daltons)
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HYPOTHESIS1 | “LIFE” IS LIKELY TO PRODUCE COMPLEXITY-IN-ABUNDANCE

Only “life” can create these 
molecules in larger quantities

These molecules can be formed 
through abiotic processes

Threshold?!

1See, e.g., Marshall et al. (2017, 2021)

Increasing complexity scores →

1



MACHINE LEARNING | OUR WORKFLOW

Complexity
score

Molecules

Data from 
instruments

Machine 
Learning

Illustrations: flaticon.com



MACHINE LEARNING | OUR WORKFLOW

Complexity
score

Molecules

Data from 
instruments

Machine 
Learning

Illustrations: flaticon.com

CN1C=N
C2=C1C(=O)

N(C(=O)
N2CC



MACHINE LEARNING | OUR WORKFLOW

Complexity
score

Molecules

Data from 
instruments

Machine 
Learning

Illustrations: flaticon.com



DATASET | MOLECULAR DATA AGGREGATED FROM MANY SOURCES

14,000+
mass spectra

150,000+
unique molecules

100,000+
CPU node hours⋯

Our 
code
(and brains!)

query combine

computecollect



DATASET | CURATING DATA MEANS LOTS OF “INVISIBLE” WORK!

Illustration: freepik.com

Data Curation

Machine Learning



MACHINE LEARNING | RESULTS: MASS-SPEC-TO-COMPLEXITY
“Good for 
space robots!”



MACHINE LEARNING | RESULTS: MOLECULE-TO-COMPLEXITY

Test set: ~4000 molecules, mean prediction error: 9.8%
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Thank you for listening
Questions?
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